Package: estimatr 1.0.2

Graeme Blair

estimatr: Fast Estimators for Design-Based Inference

Fast procedures for small set of commonly-used, design-appropriate estimators with robust standard errors and confidence intervals. Includes estimators for linear regression, instrumental variables regression, difference-in-means, Horvitz-Thompson estimation, and regression improving precision of experimental estimates by interacting treatment with centered pre-treatment covariates introduced by Lin (2013) <doi:10.1214/12-AOAS583>.

Authors:Graeme Blair [aut, cre], Jasper Cooper [aut], Alexander Coppock [aut], Macartan Humphreys [aut], Luke Sonnet [aut], Neal Fultz [ctb], Lily Medina [ctb], Russell Lenth [ctb]

estimatr_1.0.2.tar.gz
estimatr_1.0.2.zip(r-4.5)estimatr_1.0.2.zip(r-4.4)estimatr_1.0.2.zip(r-4.3)
estimatr_1.0.2.tgz(r-4.4-x86_64)estimatr_1.0.2.tgz(r-4.4-arm64)estimatr_1.0.2.tgz(r-4.3-x86_64)estimatr_1.0.2.tgz(r-4.3-arm64)
estimatr_1.0.2.tar.gz(r-4.5-noble)estimatr_1.0.2.tar.gz(r-4.4-noble)
estimatr_1.0.2.tgz(r-4.4-emscripten)estimatr_1.0.2.tgz(r-4.3-emscripten)
estimatr.pdf |estimatr.html
estimatr/json (API)
NEWS

# Install 'estimatr' in R:
install.packages('estimatr', repos = c('https://declaredesign.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/declaredesign/estimatr/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

11.59 score 131 stars 11 packages 1.7k scripts 13k downloads 3 mentions 16 exports 5 dependencies

Last updated 8 months agofrom:521a331bf4. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-win-x86_64OKNov 11 2024
R-4.5-linux-x86_64OKNov 11 2024
R-4.4-win-x86_64OKNov 11 2024
R-4.4-mac-x86_64OKNov 11 2024
R-4.4-mac-aarch64OKNov 11 2024
R-4.3-win-x86_64OKNov 11 2024
R-4.3-mac-x86_64OKNov 11 2024
R-4.3-mac-aarch64OKNov 11 2024

Exports:commarobustdeclaration_to_condition_pr_matdifference_in_meansextract.iv_robustextract.lm_robustgen_pr_matrix_clusterglancehorvitz_thompsoniv_robustlh_robustlm_linlm_robustlm_robust_fitpermutations_to_condition_pr_matstarpreptidy

Dependencies:FormulagenericsRcppRcppEigenrlang